Proving Identities

to show that two expressions are identical Use these identities:

$$
\begin{array}{ll}
\sec \theta=\frac{1}{\cos \theta} & \cos \theta=\frac{1}{\sec \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sin \theta=\frac{1}{\csc \theta} \\
\cot \theta=\frac{\cos \theta}{\sin \theta} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\cot \theta=\frac{1}{\tan \theta} & \tan \theta=\frac{1}{\cot \theta}
\end{array}
$$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
{\left[\begin{array}{c}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\cos ^{2} \theta=1-\sin ^{2} \theta \\
\sin ^{2} \theta=1-\cos ^{2} \theta
\end{array}\right]}
\end{gathered}
$$

all identities can be squared

$$
\begin{array}{|l|}
\hline \text { for example: } \\
\tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
\hline
\end{array}
$$

Some strategies to verify:

1) Work with the more complicated side first
2) As needed write everything in terms of $\sin \theta, \cos \theta, \tan \theta$
3) Replace more complicated expressions with simpler ones
4) Try to write all terms over same denominator

Prove the following identities for all permissible values of θ. ex. $1+\cot ^{2} \theta=\csc ^{2} \theta$

	Left-Hand Side	Right-Hand Side
Turn $\cot ^{2} \theta$ into into $\cos ^{2} \theta / \sin ^{2} \theta$ because they are equal	$1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$	$\csc ^{2} \theta$
Write 1 as $\sin ^{2} \theta / \sin ^{2} \theta$ to make a common denominator	$\begin{aligned} & \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\ & \sin ^{2} \theta+\cos ^{2} \theta \end{aligned}$	
Replace $\sin ^{2} \theta+\cos ^{2} \theta$ with 1 because they are equal		
	$\sin ^{2} \theta$	
Write $1 / \sin ^{2} \theta$ as its reciprocal because they are equal		
Use any of these to end the question. They all mean that the two sides are now proven to be the same.		$\therefore L H S=F$

ex. $\frac{2-\sin ^{2} \theta}{\cos \theta}=\sec \theta+\cos \theta$ $\cos \theta$

$$
\text { ex. } 2 \sin ^{2} \theta-1=\sin ^{2} \theta-\cos ^{2} \theta
$$

	Left-Hand Side	Right-Hand Side
Replace 1 withsin $\theta+\cos ^{2} \theta$ becaus $\partial \sin ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$they are equal		$\sin ^{2} \theta-\cos ^{2} \theta$
Distribute negative in $2 s$ bracket	$\theta-\sin ^{2} \theta-\cos ^{2} \theta$	
Subtract $\sin ^{2} \theta$ terms	$\sin ^{2} \theta-\cos ^{2} \theta$	$\therefore \square$
Option 2: A different method	Left-Hand	Right-Hand
Replace $\cos ^{2} \theta$ with $1-\sin ^{2} \theta$ because they are equal	$2 \sin ^{2} \theta-1$	$\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)$
Distribute negative in bracket		$\sin ^{2} \theta-1+\sin ^{2} \theta$
Add $\sin ^{2} \theta$ terms		$2 \sin ^{2} \theta-1$
\therefore QED		

Difference of Squares Identities

Recall: $\quad a^{2}-b^{2}=(a+b)(a-b)$

> Recall: $\quad \cos ^{2} \theta+\sin ^{2} \theta=1$
> $\cos ^{2} \theta=1-\sin ^{2} \theta$
> $\cos ^{2} \theta=(1-\sin \theta)(1+\sin \theta)$

Likewise: $\sin ^{2} \theta=1-\cos ^{2} \theta$
$\sin ^{2} \theta=(1-\cos \theta)(1+\cos \theta)$
ex. $\frac{\cos \theta}{1-\sin \theta}=\sec \theta+\tan \theta$

Multiply $1-\sin \theta$ by its conjugate ($1+\sin \theta$)	Left-Hand Side	Right-Hand Side
	$\frac{\cos \theta}{(1-\sin \theta)(1+\sin \theta)}(1+\sin \theta)$	$\sec \theta+\tan \theta$
	$\frac{\cos \theta(1+\sin \theta)}{1-\sin ^{2} \theta}$	
Replace $1-\sin ^{2} \theta$ with $\cos ^{2} \theta$ because they are equal	$\frac{\cos ^{2}(1+\sin \theta)}{\cos ^{2} \theta}$	
Cancel cose	$1+\sin \theta$	
Split into two separate fractions with same denominator	$\begin{aligned} & \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \end{aligned}$	
Change into different trig functions that are equal to $1 / \cos \theta$ and $\sin \theta / \cos \theta$	$\operatorname{Sec} \theta+\tan \theta \quad \therefore$ L	RHS

