Proving Identities

Some strategies to verify:

- 1) Work with the more complicated side first
- 2) As needed write everything in terms of $\sin\theta$, $\cos\theta$, $\tan\theta$
- 3) Replace more complicated expressions with simpler ones
- 4) Try to write all terms over same denominator

Prove the following identities for all permissible values of θ . ex. 1 + cot² θ = csc² θ

ex.
$$2 - \sin^2 \theta = \sec \theta + \cos \theta$$

Left-Hand Side Right-Hand Side
Split up the numerator into
two separate fractions with $2 - \sin^2 \theta = -\sin^2 \theta = -\sin^2 \theta$ $= -\sin^2 \theta = -\sin^2$

ex. $2\sin^2\theta - 1 = \sin^2\theta - \cos^2\theta$

	Left-Hand Side	Right-Hand Side
Replace 1 with sin ² θ + cos ² θ because sin ² θ they are equal	$-(\sin^{\circ}\theta + \cos^{2}\theta)$	sin ³ 8-cos ³ 0
Distribute negative in 2 sìn ² bracket	6-sin 8 -cos 20	
Subtract sin ² 0 terms	s'in²0 - cos°0	
Option 2: A different method	Left-Hand	Right-Hand
Replace cos ² θ with 1 - sin ² θ because they are equal	2sin 0-1	$(\theta_{0}^{\circ}) = \theta_{0}^{\circ}$
Distribute negative in bracket		Sin ² 0 - I + Sin ² 0
Add sin ² θ terms		25109-1
·· QE		ED

Difference of Squares Identities

Recall: $a^2 - b^2 = (a + b)(a - b)$ Recall: $\cos^2\theta + \sin^2\theta = 1$ $\cos^2\theta = 1 - \sin^2\theta$ $\cos^2\theta = (1 - \sin\theta)(1 + \sin\theta)$ Likewise: $\sin^2\theta = 1 - \cos^2\theta$ $\sin^2\theta = (1 - \cos\theta)(1 + \cos\theta)$

