Simplifying Radicals

A <u>perfect square</u> is the product of a number multiplied by itself. Ex) 81 is a perfect square since 81 = (9)(9)

Square root	Perfect square	Square root	Perfect square
2	4	9	81
3	9	10	100
4	16	11	121
5	25	12	144
6	36	13	169
7	49	14	196
8	64	15	225
Definitions	s _ n,		EX: 38
	index V	Xradicand	3 > index
	<u>t</u>	. daroana	8 -> radicand
	radio	al	

A radical is simplified when the radicand has no perfect square factors.

Ex 1) $\sqrt{33}$ cannot be simplified

To put a radical in its simpliest form we use the <u>Radical</u> <u>Mulitplication Property</u>

$Ex 2) \sqrt{18} = \int 9.2 = \int 9.52 = 352$

An expression of the form \sqrt{x} is called an <u>entire radical</u>. An expression of the form $a\sqrt{x}$ is called a <u>mixed radical</u>.

Mixed radicals, such as $3\sqrt{2}$ means $3 \times \sqrt{2}$ just as 3n means 3 x n or (3)(n)

Ex 3) Simplify the following:

√1 = /	$\sqrt{11}$ ×	√ <u>21</u> ×
$\sqrt{2}$ ×	$\sqrt{12}$ $\sqrt{453} = 253$	$\sqrt{22} \times$
$\sqrt{3}$ ×	$\sqrt{13}$ ×	$\sqrt{23} \times$
√4 = <i>⊃</i>	√14 ×	√24 14,16 = 2,16
$\sqrt{5}$ ×	√15 ×	√25 = 5
$\sqrt{6}$ ×	√16 = ←	√ <u>26</u> ×
√ <u>7</u> ×	√17 ×	$\sqrt{27} = 1913 = 313$
$\sqrt{8}$ $54 \cdot 52 = 252$	$\sqrt{18}$ $\sqrt{18}$ $\sqrt{18}$ $\sqrt{13}$	$\sqrt{28} = \sqrt{4} \sqrt{7} = 2\sqrt{7}$
√ <u>9</u> = 3	√ <u>19</u> ×	√ <u>29</u> ×
√10 ×	√20 √4 ∫5=2/5	√30 ×
$ \sqrt{100} \sqrt{5} $		
√500	172 V	36 V a

$\sqrt{500}$ $0\sqrt{5}$	√72	652
$\sqrt{125} \begin{array}{c} \sqrt{25} \sqrt{5} \\ 5 \sqrt{5} \end{array}$	$\sqrt{48}$	VTG J3 4 J3
√96 J16 J6 4J6	$\sqrt{32}$	176 Ja 4 Ja
√45 J9 J5 3 J5	$\sqrt{27}$	J9J3 3J3
√60 14 JIS 2 JIS	$\sqrt{40}$	J4 JTO 2 JTO
$\sqrt{117}$ $\sqrt{9}$ $\sqrt{13}$ $3\sqrt{13}$	$\sqrt{80}$	JT6 J5 4J5
$\sqrt{200}$ JA J50		
JI00 JZ 2 J50		
(10Ja 2J25Ja lorgest 25Ja Square 10Ja		