Simplifying Radicals

A perfect square is the product of a number multiplied by itself. Ex) 81 is a perfect square since $81=(9)(9)$

Square root	Perfect square		Square root	Perfect square
2	4		9	81
3	9		10	100
4	16		11	121
5	25		12	144
6	36		13	169
7	49		14	196
8	64		15	225

Definitions

$$
3 \rightarrow \text { inde } x
$$

$$
8 \rightarrow \text { radicand }
$$

A radical is simplified when the radicand has no perfect square factors.
Ex 1) $\sqrt{33}$ cannot be simplified
To put a radical in its simpliest form we use the Radical Mulitplication Property
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$ if $a \geq 0, b \geq 0$
Ex 2) $\sqrt{18}=\sqrt{9 \cdot 2}=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2}$
An expression of the form \sqrt{x} is called an entire radical.
An expression of the form $a \sqrt{x}$ is called a mixed radical.
Mixed radicals, such as $3 \sqrt{2}$ means $3 \times \sqrt{2}$
just as $3 n$ means $3 \times n$ or (3)(n)

Ex 3) Simplify the following:

$$
\begin{aligned}
& \sqrt{1}=1 \\
& \sqrt{2} \times \\
& \sqrt{3} \times \\
& \sqrt{4}=2 \\
& \sqrt{5} \times \\
& \sqrt{6} \times \\
& \sqrt{7} \\
& \sqrt{8} \sqrt{4} \cdot \sqrt{2}=2 \sqrt{2} \\
& \sqrt{9}=3 \\
& \sqrt{10} \times \\
& \begin{array}{ll}
\sqrt{11} \times & \sqrt{21} \times \\
\sqrt{12} \sqrt{4} \sqrt{3}=2 \sqrt{3} & \sqrt{22} \times \\
\sqrt{13} \times & \sqrt{23} \times
\end{array} \\
& \sqrt{14} \times \quad \sqrt{24} \sqrt{4} \sqrt{6}=2 \sqrt{6} \\
& \sqrt{15} \times \quad \sqrt{25}=5 \\
& \sqrt{16}=4 \quad \sqrt{26} \times \\
& \sqrt{17} \times \quad \sqrt{27}=\sqrt{9} \sqrt{3}=3 \sqrt{3} \\
& \sqrt{18} \sqrt{9} \sqrt{2}=3 \sqrt{2} \sqrt{28}=\sqrt{4} \sqrt{7}=2 \sqrt{7} \\
& \sqrt{19} \times \quad \sqrt{29} \times \\
& \sqrt{20} \sqrt{4} \sqrt{5}=2 \sqrt{5} \quad \sqrt{30} \times \\
& \begin{array}{lc}
\sqrt{500} & \begin{array}{c}
100 \\
10 \sqrt{5} \\
10
\end{array}
\end{array} \\
& \begin{array}{cc}
\sqrt{125} \quad \sqrt{25} \sqrt{5} \\
5 \sqrt{5}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\left.\sqrt{96} \quad \begin{array}{c}
\sqrt{16} \sqrt{6} \\
4 \sqrt{6}
\end{array}\right]
\end{array} \\
& \begin{array}{r}
\sqrt{45} \quad \sqrt{9} \sqrt{5} \\
3 \sqrt{5}
\end{array} \\
& \sqrt{60} \sqrt{4} \sqrt{15} \\
& 2 \sqrt{15} \\
& \begin{array}{c}
\sqrt{117} \sqrt{9} \sqrt{13} \\
3 \sqrt{13}
\end{array} \\
& \sqrt{200} \sqrt{4} \sqrt{50} \\
& \sqrt{100} \sqrt{2} \quad 2 \sqrt{50} \\
& \left(\begin{array}{ll}
10 \sqrt{2} & 2 \sqrt{25} \sqrt{2} \\
\text { largest }
\end{array}\right. \\
& \begin{array}{r}
\left.\begin{array}{l}
\text { largest } \\
\text { square } \\
\\
\\
\\
\\
10 \sqrt{2}
\end{array}\right) .5 \sqrt{2}
\end{array}
\end{aligned}
$$

