Mixed to Entire Radicals

Ex 1) Write the following numbers as a radical:

a) 4
$$\sqrt{16}$$
 or $\sqrt{4.4}$

Ex 2) Express as an entire radical:

$$4\sqrt{3} = \sqrt{4 \cdot 4 \cdot 3} = \sqrt{48}$$

$$6\sqrt{5} = \sqrt{66 \cdot 5} = \sqrt{180}$$

$$2\sqrt{7} = \sqrt{3 \cdot 6 \cdot 5} = \sqrt{180}$$

$$2\sqrt{7} = \sqrt{3 \cdot 6 \cdot 5} = \sqrt{8}$$

$$5\sqrt{2} = \sqrt{5 \cdot 5 \cdot 3} = \sqrt{50}$$

$$3\sqrt[3]{3} = \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 3} = \sqrt{81}$$

$$2\sqrt[3]{4} = \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 3} = \sqrt{81}$$

$$2\sqrt[3]{4} = \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 3} = \sqrt{81}$$

$$2\sqrt[3]{4} = \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 3} = \sqrt{3138}$$

$$= \sqrt[3]{64 \cdot 3}$$

$$5\sqrt[3]{2} = \sqrt[3]{5 \cdot 5 \cdot 5 \cdot 3} = \sqrt[3]{250}$$

Ex 3) Arrange in order from least to greatest:

$$3\sqrt{2}$$
, $4\sqrt{5}$, $2\sqrt{10}$, $3\sqrt{6}$, $\sqrt{24}$
 $\sqrt{9\cdot2}$ $\sqrt{16\cdot5}$ $\sqrt{4\cdot10}$ $\sqrt{9\cdot6}$
 $\sqrt{18}$ $\sqrt{80}$ $\sqrt{40}$ $\sqrt{54}$
 $\sqrt{3\sqrt{2}}$, $\sqrt{24}$, $2\sqrt{10}$, $3\sqrt{6}$, $4\sqrt{5}$