Fractional Exponents and Radicals

$3^{4}=3 \times 3 \times 3 \times 3=81$
The 4 indicates repeated multiplication.
A rational exponent has no meaning for this format.
$3^{1 / 2}$ "cannot be done" as repeated multiplication.
But it can be done with a calculator.
$3^{1 / 2}=1.732050808 \ldots$

x	$x^{\frac{1}{3}}$
1	1
8	2
27	3
64	4
125	5

$\therefore x^{\frac{1}{2}}=\sqrt{x}$
$\therefore x^{\frac{1}{3}}=\sqrt[3]{x}$
In general...
When n is a natural number and x is a rational number, $x^{\frac{1}{n}}=\sqrt[n]{x}$

Ex. 1 Evaluate each power without using a calculator.
a) $1000^{\frac{1}{3}}$
b) $0.25^{\frac{1}{2}}$
c) $(-8)^{\frac{1}{3}}$
d) $\left(\frac{16}{81}\right)^{\frac{1}{2}}$
$\sqrt[3]{1000}$
$\sqrt{0.25}^{\prime} \quad \sqrt[3]{-8}{ }^{\prime}$

$$
\sqrt{\frac{16}{81}}^{1}=\frac{\sqrt{16}}{\sqrt{81}}=\frac{4}{9}
$$

"Bottom Out"

Whatever the bottom value of a rational exponent, this is the value that goes out of the radical sign. The top value stays by the base.

Ex 2: $8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}$ or $\sqrt[3]{8^{2}}$
When m and n are natural numbers, and x is a rational number,

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}} \quad \text { or } \quad x^{\frac{m}{n}}=(\sqrt[n]{x})^{m}
$$

Ex 3: a) Write $26^{\frac{2}{5}}$ in radical form in two ways.

$$
(\sqrt[5]{26})^{2} \quad \sqrt[5]{26^{2}}
$$

b) Write $\sqrt[2]{6^{5}}$ and $(\sqrt[4]{19})^{3}$ in exponent form.

$$
6^{\frac{5}{2}} 19^{\frac{3}{4}}
$$

Ex 4: Evaluate. *Usually easier to take the root first!

$$
\begin{array}{lc}
16^{\frac{3}{2}} & (-27)^{\frac{4}{3}} \\
(\sqrt{16})^{3} & (\sqrt[3]{-27})^{4} \\
(4)^{3} & (-3)^{4} \\
64 & 81 \\
\left(8^{\frac{5}{3}}\right. & \left(\frac{-64}{27}\right)^{\frac{2}{3}} \\
(\sqrt[3]{8})^{5} & \frac{(\sqrt[3]{-64})^{2}}{2^{5}} \\
32 & (\sqrt[3]{27})^{2} \\
& \\
&
\end{array}
$$

