Fractional Exponents and Radicals

 $3^4 = 3 \times 3 \times 3 \times 3 = 81$ The 4 indicates repeated multiplication.

A rational exponent has no meaning for this format.

 $3^{\frac{1}{2}}$ "cannot be done" as repeated multiplication. But it can be done with a calculator.

3^{1/2} = 1.732050808...

X	$x^{\frac{1}{2}}$	X	$x^{\frac{1}{3}}$	
1	1	1		
4	る	8	2	
9	3	27	3	
16	4	64	4	
25	5	125	5	
1		1		
$x^{\overline{2}}$:	$=\sqrt{x}$	$\therefore x^{\overline{3}}$	$\therefore x^{\overline{3}} = \sqrt[3]{x}$	

In general... When *n* is a natural number and *x* is a rational number, $\chi \frac{1}{n} = \sqrt[n]{x}$

Ex. 1 Evaluate each power without using a calculator.

a)
$$1000^{\frac{1}{3}}$$
 b) $0.25^{\frac{1}{2}}$ c) $(-8)^{\frac{1}{3}}$ d) $(\frac{16}{81})^{\frac{1}{2}}$
 $\sqrt{1000}'$ $\sqrt{0.25}'$ $\sqrt{-8}'$ $(\frac{16}{81} = \frac{\sqrt{16}}{\sqrt{81}} = \frac{4}{9})$

"Bottom Out"

Whatever the <u>bottom</u> value of a rational exponent, this is the value that goes <u>out</u> of the radical sign. The top value stays by the base.

Ex 2:
$$8^{\frac{2}{3}} = (3\sqrt{8})^2$$
 or $3\sqrt{8}^2$

When *m* and *n* are natural numbers, and *x* is a rational number, $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ or $x^{\frac{m}{n}} = (\sqrt[n]{x})^m$

Ex 3: a) Write $26^{\frac{1}{5}}$ in radical form in two ways.

2

Ex 4: Evaluate. *Usually easier to take the root first!

