Negative Exponents

$$
\frac{1}{x^{\prime}}=\frac{\mathrm{x}^{-1}}{1} \text { OR } \frac{1}{x^{-1}}=x^{\prime} \begin{aligned}
& \text { They are } \\
& \text { reciprocals }
\end{aligned}
$$

Ex) Simplify: Our goal is to not have any negative exponents!

$$
\begin{array}{lll}
\frac{x^{-3}}{1} \frac{1}{x^{3}} & \frac{1}{x^{-4}} x^{4} & \frac{1}{2^{-2}}=2^{2}=4 \\
2^{-2} \frac{1}{2^{2}}=\frac{1}{4} & 3^{-4} \frac{1}{3^{4}}=\frac{1}{81} & \frac{1}{3^{-3}}=3^{3}=27
\end{array}
$$

* Always move the negative exponent first then solve.

Negatives and Rational exponents
Ex) Evaluate:

$$
\begin{array}{rlrl}
4^{-\frac{1}{2}} & =\frac{1}{4^{1 / 2}} & (-8)^{\theta^{\frac{1}{3}}}=\frac{1}{(-8)^{1 / 3}} & 27^{-\frac{2}{3}}=\frac{1}{27^{2 / 3}} \\
& =\frac{1}{\sqrt{4}} & =\frac{1}{\sqrt[3]{-8}} & =\frac{1}{-2} \\
& =\frac{1}{(\sqrt[3]{27})^{2}} \\
16^{-\frac{3}{4}} & =\frac{1}{16^{3 / 4}} & & =\frac{1}{3^{2}}=\frac{1}{9} \\
& =\frac{1}{4 \sqrt{16}^{3}} & (-64)^{-\frac{2}{3}}=\frac{1}{(-64)^{3 / 3}} & 4^{-\frac{3}{2}}=\frac{1}{4^{3 / 2}} \\
& =\frac{1}{(2)^{3}}=\frac{1}{8} & & =\frac{1}{\left.(-4)^{-64}\right)^{2}}
\end{array} \quad \begin{array}{ll}
(\sqrt{4})^{3} \\
16 &
\end{array}
$$

To write the reciprocal of a fraction, switch the numerator and denominator.

$$
\text { ex) } \frac{2}{5} \gg \frac{5}{2}
$$

Ex) $\begin{aligned}\left(\frac{2}{5}\right)^{-3} & =\left(\frac{5}{2}\right)^{3} \\ & =\frac{(5)^{3}}{(2)^{3}} \\ & =\frac{125}{8}\end{aligned}$

$$
\begin{aligned}
\left(-\frac{4}{3}\right)^{-2} & =\left(-\frac{3}{4}\right)^{2} \\
& =\frac{(-3)^{2}}{(4)^{2}} \\
& =\frac{9}{16}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{25}{49}\right)^{-\frac{1}{2}} & =\left(\frac{49}{25}\right)^{1 / 2} & \left(\frac{16}{81}\right)^{-\frac{3}{4}} & =\left(\frac{81}{16}\right)^{3 / 4} \\
& =\frac{\sqrt{49}}{\sqrt{25}} & & =\frac{(4 \sqrt{81})^{3}}{(4 \sqrt{16})^{3}} \\
& =\frac{7}{5} & & =\frac{3^{3}}{2^{3}}=\frac{27}{8}
\end{aligned}
$$

