Intro to Translation

Recall from 30SP $f(x) = x^2$

$$f(x) = x^2$$

$$f(x) = x^2 + d$$

"d" shifts f(x) vertically up/down by d-units + d --> up - d --> down

$$f(x) = (x - c)^2$$

"c" shifts f(x) horizontally left/right (x-c) --> shifts right by c-units (x+c) --> shifts left by c-units

$$f(x) = ax^2$$

"a" stretches or compresses f(x) vertically a>1 vertical stretch occurs

$$f(x) = a(x + c)^2 + d$$

Need to know some base graphs:

1)
$$y = x$$

line

3)
$$y = x^3$$
 cubic

5)
$$y = 1$$

6) $y = \sqrt{x}$

radical

reciprocal NPV $x \neq 0$

(1,1)Invariant (-1,-1)

Transformations

Given a graph of a function y = f(x), we can find the graphs of related functions using transformations, reflections, stretches, and compressions.

Example:

$$(-2,0)$$
 $(-1,-2)$
 $(0,0)$
 $(3,2)$

1)
$$y = f(x) \pm d$$

The graph of $y = f(x) \pm d$ consists of the graph of y = f(x) moved through a vertical translation of d units.

Note: Same Sign $(x, y) \rightarrow (x, y \pm d)$ $(-2,0) \rightarrow (-2,2)$ $(-1,-2) \longrightarrow (-1,0)$ $(0,0) \longrightarrow (0,2)$ $(3,2) \longrightarrow (3,4)$ 2) $y = f(x \pm c)$

The graph of $y = f(x \pm c)$ consists of the graph of y = f(x) moved through a horizontal translation of c units.

Note: Opposite Sign

te: Opposite Sign
$$(x, y) \rightarrow (x \pm c, y) \qquad (x - 3, y)$$

$$(-2, 0) \rightarrow (-5, 0)$$

$$(-1, -2) \rightarrow (-4, -2)$$

$$(0, 0) \rightarrow (-3, 0)$$

$$(3, 2) \rightarrow (0) \rightarrow (0)$$

Example: $y = f(x + 3) \mid ef +$

ex. Given the graph of f(x), Sketch the graph of

$$y = f(x - 1) - 3$$

(19ht down

(x,y) \rightarrow (x+1,y-3)

(-5,0) \rightarrow (-4,-3)

(-3,5) \rightarrow (-2,2)

(4,2) \rightarrow (5,-1)

ex. State the equation for the following functions

in relation to M(x)

- a) P(x)
- b) H(x)

a)
$$P(x) = M(x+2) + 3$$

b)
$$H(x) = M(x) - 6$$

ex. Describe the following in words:

a)
$$y = (x + 1)^2 - 4$$

moves left I space
and down 4 spaces

b)
$$f(x) = (x - 3)^2 + 6$$

shifted 3 units right
and 6 units up

$$(#8) y+3=f(x+a)$$
 $y=f(x+a)-3$
 $(a-16)$

Domain and Range:

Domain - x-values

Range - y-vales

If given just points that are not connected by a line \rightarrow list them as a set.

Ex. {(1,-1), (4, 2), (4, 0)}

D: {1, 4}

R: {-1, 0, 2}

Set Notation:

D: $\{x \mid$

 $R: \{y \mid$

use ≤ or ≥

point is included
 point is not included

use < or >

If all values use $x \in R$ or $y \in R$

of yer all real numbers belongs to or is an element of

Interval Notation:

Use []

• point is included opoint is not included Use []

use ()

If all values use $(-\infty, \infty)$

ex. The graph of y = |x| is translated 7 units right and 6 units

up. What is the equation of the image graph?

D: {x/xER% (-00,00) R: (y/4=6} [6,00)

ex. The function y = f(x) has the domain $-1 \le x \le 4$ and range 2≤y≤7. What are the domain and range of y = f(x - 5) + 1?

D: \(\lambda \) \(4 \) \(\lambda \) \(\l R: {y|3 < y < 85 [3,8]