Analyzing Rational Functions
Rational Functions $=$ Functions of the form $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$.

$$
f(x)=\frac{x^{2}}{\substack{x-1 \\ x \neq 1}} \quad g(x)=\frac{2}{x^{2}-9} x \neq \pm 3
$$

Holes vs. Vertical Asymptotes
Vertical asymptotes correspond to the non-permissible values in the equation of a function. Not all non-permissible values are vertical asymptotes. Some non-permissible values result in holes or points of discontinuity (if the numerator and denominator have common factors.)

$$
\text { ex. } \begin{aligned}
f(x) & =\frac{x^{2}-5 x+6}{x-3} \\
& =\frac{(x-3)(x-2)}{(x-3)} \\
& =x-2, x \neq 3
\end{aligned}
$$

ex. Compare the following: $f(x)=\frac{x^{2}-2 x}{4-2 x} \quad g(x)=\frac{x^{2}+2 x}{4-2 x}$

$$
\left.\begin{array}{rlr}
(2-x) \\
(-x+2) \\
-(x-2)
\end{array}\right\} \begin{array}{rlr}
f(x)=\frac{x(x-2)}{2(2-x)} & g(x) & =\frac{x(x+2)}{2(2-x)} \\
& =\frac{x(x-2)}{-2(x-2)} & \\
& =-\frac{x}{2}, x \neq 2 & \\
\hline-2(x-2), x \neq 2
\end{array}
$$

ex. Match each graph with the equation of the rational function:

$$
\begin{aligned}
A(x) & =\frac{x^{2}+2 x}{x^{2}-4} \\
& =\frac{x(x+2)}{(x-2)(x+2)} \\
& x \neq \pm 2
\end{aligned}
$$

$$
B(x)=\frac{2 x+4}{x^{2}+1}
$$

$$
\frac{2(x+2)}{\sum_{x^{2}+1}^{x^{2}+1 * 0}}
$$

$$
\begin{array}{r}
x^{2}+1 \leqslant 0 \\
x^{2} \pm-1
\end{array}
$$

$C(x)=\frac{2 x}{x^{2}-4}$

$x \neq \pm 2$

2 options for Horizontal Asymptotes:

1) If the degree of the numerator is less than the degree of the denominator, the H.A. will be $y_{0}=0$

$$
f(x)=\frac{1}{x-2 \operatorname{Deg} 0} \quad g(x)=\frac{x+2}{x^{2}-4} \operatorname{Deg} 1
$$

2) If the degree is the same must look at the leading coefficients of the numerator and denominator.

$$
\begin{array}{rr}
h(x)=2 x^{2} \operatorname{Deg} 2 & k(x)=\frac{x-3}{4-x} \\
=x^{2}-1 \operatorname{Deg} 2 & y=\frac{1}{-1} \\
y=\frac{2}{1} & y=-1
\end{array}
$$

Ex. Determine the equations of all asymptotes and the coordinates of any points of discontinuity (if necessary).

$$
\left.\begin{array}{rlrl}
f(x)=\frac{x+1}{x^{2}+x-2} & g(x) & =\frac{x^{2}-3 x+2}{1-x^{2}} \\
=\frac{x+1}{(x+2)(x-1)} & & =x \neq-2,1 & \frac{(x-2)(x-1)}{-(x-1)(x+1)} \\
\text { HA } y=0 & & =\frac{(x-2)}{-(x+1)}, x \pm-1,1
\end{array}\right] \begin{aligned}
\text { VA } x=-2,1 & \text { HA } y & =-1
\end{aligned}
$$

