Composite Functions

Refers to the combining of two functions $f(x)$ and $g(x)$ where the output of one function is used as the input of the other function.

Recall, $f(x)=2 区-1$ find $f(3)$

$$
\begin{aligned}
f(3) & =2(3)-1 \\
& =5
\end{aligned}
$$

The notation used for compostion is

$$
\begin{array}{ll}
(\mathrm{f} \circ \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x})) & \begin{array}{l}
\text { Inner brackets are done first. } \\
\text { First substitute into } \mathrm{g}, \text { then into } \mathrm{f} .
\end{array}
\end{array}
$$

Reads " f composed with g of x " or "f of g of x "

Ex. The tables below define two functions.
Use these tables to determine each value below.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-2	8
-1	3
0	0
1	-1
2	0

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
-2	3
-1	2
0	1
1	0
2	-1

a) $f(\underline{g}(-1))$
$f\left(\frac{x}{2}\right)$

c) $g(f(1))$

$$
\begin{gathered}
9(-1) \\
2
\end{gathered}
$$

b) $\begin{aligned} & f(f(2)) \\ & f(0)\end{aligned}$
d) $g(g(2))$
$9(-1)$
2

Given the graphs of $y=f(x)$ and $y=g(x)$, determine each value below:

$$
\text { a) } f\left(g\left(-\frac{x}{x}\right)\right)
$$

b) $g(f(3))$

$$
g(2)=3
$$

c) $f(f(4))$
$f(1)$ 4

Ex) If $f(x)=4 x, g(x)=x+6$, and $h(x)=x^{2}$, find
a) $f(g(3))$
b) $g(\mathrm{~h}(-2))$
c) $h(h(2))$
a)

$$
\begin{aligned}
g(3) & =3+6 \\
& =9 \\
f(9) & =4(9) \\
& =36
\end{aligned}
$$

b) $g(h(-2))=10$
c) $h(2)=2^{2}=4$

$$
h(h(2))=4^{2}
$$

$$
=16
$$

$$
\text { Ex) If } f(x)=x^{3}+1 \text { and } g(x)=2 x \text {, find }(f \circ g)(x) \text {. }
$$

$$
\begin{aligned}
& (f \circ g) x \\
= & f(g(x)) \\
= & f(2 x) \\
= & (2 x)^{3}+1 \\
= & 8 x^{3}+1
\end{aligned}
$$

Steps:

1) Write the expression for the function of $g(2 x)$ in the $g(x)$ 'spot' in the composition
2) Now substitute this expression (2x) into function in the x 'spot'
3) Simplify (if necessary)

Ex) Given $f(x)=5 x$ and $g(x)=x^{2}+1$, find
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$

$$
\begin{array}{lc}
\text { a) } \begin{array}{lc}
f(g(x)) & \text { b) } g(f(x)) \\
f\left(x^{2}+1\right) & g(5 x) \\
5\left(x^{2}+1\right) & (5 x)^{2}+1 \\
5 x^{2}+5 & 25 x^{2}+1
\end{array} \text { (} 10
\end{array}
$$

Notice that $(f \circ g)(x)$ and $(g \circ f)(x)$ do not necessarily have the same answer.

Ex) Given $f(x)=4 x$ and $g(x)=x^{2}-x+3$, find
a) $f(g(x))$
b) $g(f(x))$
c) $f(f(x))$
a) $f(g(x))$
b) $g(f(x))$
c) $f(f(x))$
$f\left(x^{2}-x+3\right)$
$4\left(x^{2}-x+3\right)$
$g(4 x)$ $f(4 x)$
$4 x^{2}-4 x+12$
$(4 x)^{2}-(4 x)+3$
4(4x)
$16 x$
$16 x^{2}-4 x+3$ p. 299
\# $1-11,13,15$

