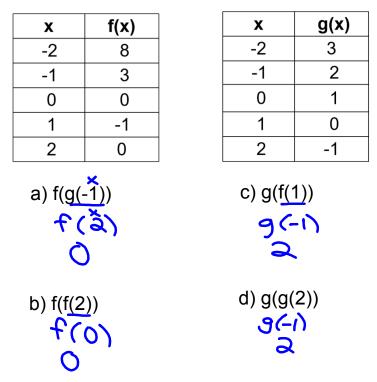
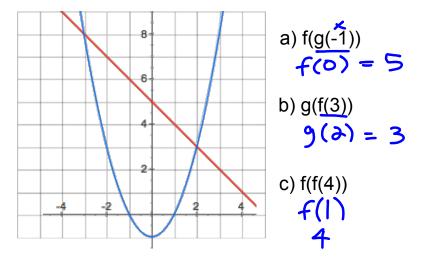
Composite Functions

Refers to the combining of two functions f(x) and g(x) where the output of one function is used as the input of the other function.

Recall,
$$f(x) = 2(x) - 1$$
 find $f(3)$
 $f(3) = 2(3) - 1$
 $x = 3$
 $= 5$


The notation used for compostion is

$$(f \circ g)(x) = f(g(x))$$


Inner brackets are done first. First substitute into g, then into f.

Reads "f composed with g of x" or "f of g of x"

Ex. The tables below define two functions. Use these tables to determine each value below.

Given the graphs of y = f(x) and y = g(x), determine each value below:

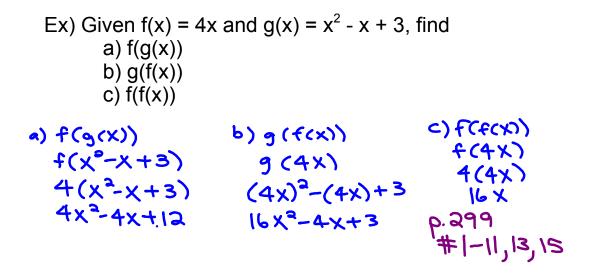
Ex) If
$$f(x) = 4x$$
, $g(x) = x + 6$, and $h(x) = x^2$, find
a) $f(\underline{g(3)})$
b) $g(h(-2))$
c) $h(h(2))$
a) $g(3) = 3 + 6$
f $(9) = 4(9)$
e 36
b) $g(h(-a)) = 10$
c) $h(a) = a^2 = 4$
h $(h(a)) = 4^2$
e (6)

Ex) If $f(x) = x^3 + 1$ and g(x) = 2x, find $(f \circ g)(x)$.

 $(f \circ g) \times$ = f(g(X))= $f(\partial X)$ = $(\partial X)^{3} + 1$ = $(\partial X)^{3} + 1$ = $8X^{3} + 1$

Steps:

1) Write the expression for the function of g(2x) in the g(x) 'spot' in the composition


2) Now substitute this expression (2x) into function in the x 'spot'

3) Simplify (if necessary)

Ex) Given f(x) = 5x and g(x) = x² + 1, find
a) (f ∘ g)(x)
b) (g ∘ f)(x)

\rightarrow f(g(x))	p) d(t(x))
+(x2+1)	9(5x)
5(x²+1)	$(5x)^{2} + 1$
5×2+5	25×3+1

Notice that $(f \circ g)(x)$ and $(g \circ f)(x)$ do not necessarily have the same answer.

