Graphing Composite Functions
Consider $f(x)=\sqrt{x}$ and $g(x)=x^{2}+2$
Determine $f(g(x))$ and $g(f(x))$

$$
\begin{array}{rlrl}
f(g(x)) & =f\left(x^{2}+2\right) & g(f(x)) & =g(\sqrt{x}) \\
& =\sqrt{x^{2}+2} & & g(\sqrt{x})^{2}+2 \\
g(x) D:\{x \mid x \in \mathbb{R}\} & & =x+2 \\
D:\{x \mid x \in \mathbb{R}\} & & f(x) & D:[0, \infty) \\
& & D:[0, \infty)
\end{array}
$$

\star To find the domain of $f(g(x))$ you must consider the restrictions on the domain of $\underline{g(x)}$ and the new restrictions for ($\mathrm{f}(\mathrm{g}(\mathrm{x})$)

Ex) Consider $f(x)=\frac{1}{x+3}$ and $g(x)=\frac{1}{x}$
Determine $f(g(x))$ and $g(f(x))$ and state its domain.

$$
\begin{array}{rlr}
\left\{f(g(x))=f\left(\frac{1}{x}\right)\right. & g(f(x)) & =g\left(\frac{1}{x+3}\right) \\
\frac{1}{x+3=0} \frac{1}{x}=-3\left\{\frac{1}{\frac{1}{x}+3}\right. & =\frac{1}{\frac{1}{x+3}} \\
g(x) \Delta:\{x \mid x \in \mathbb{R}, x \neq 0\} & & =x+3 \\
D:\left\{x \mid x \in \mathbb{R}, x \neq 0,-\frac{1}{3}\right\} & D:\{x \mid x \in \mathbb{R}, x \neq-3\} \\
& D:\{x \mid x \in \mathbb{R}, x \neq-3\}
\end{array}
$$

Given $f(x)=x-1$ and $g(x)=x^{2}$, write the equation of $y=f(g(x))$ and sketch the graph.

$$
\begin{aligned}
y & =f(g(x)) \\
& =f\left(x^{2}\right) \\
& =x^{2}-1
\end{aligned}
$$

Given $f(x)=x^{2}-1$ and $g(x)=\sqrt{x+1}$, sketch the graph of $y=f(g(x))$ and state its domain.

$$
\begin{aligned}
y & =f(g(x)) \\
& =f(\sqrt{x+1}) \\
& =(\sqrt{x+1})^{2}-1 \\
& =x \\
D & :\{x \mid x \geq-1\}
\end{aligned}
$$

Ex) Determine possible functions $f(x)$ and $g(x)$ so that:
a) $f(g(x))=(x-2)^{2}$
b) $f(g(x))=\sqrt{x+3}$
c) $f(g(x))=x^{2}+4 x+3$
a) $g(x)=x-2$

$$
f(x)=x^{2}
$$

$$
\text { b) } \begin{aligned}
g(x) & =x+3 \\
f(x) & =\sqrt{x} \\
\text { c) } g(x) & =x^{2}+4 x+3 \\
f(x) & =x
\end{aligned}
$$

$$
p .314
$$

$$
+3-6,9
$$

