Solving a System Algebraically by Elimination (Tougher)

$$
\text { ex) } \begin{aligned}
2 x+3 y & =6 \\
-2(1 x+4 y & =8) \\
2 x+3 y & =6 \\
-2 x-8 y & =-16 \\
\hline \frac{-5 y}{-5} & =\frac{-10}{-5} \\
y & =2
\end{aligned}
$$

ex)

$$
\begin{aligned}
5 x-9 y & =-3 \\
-3(4 x-3 y & =6) \\
5 x-9 y & =-3 \\
-12 x+9 y & =-18 \\
\hline-7 x & =\frac{-21}{-7} \\
x & =3
\end{aligned}
$$

ex)

$$
\begin{aligned}
3 x+2 y & =4 \\
2(x-y & =3) \\
3 x+2 y & =4 \\
2 x-2 y & =6 \\
\hline 5 x & =10 \\
x & =2
\end{aligned}
$$

If there is no matching pair you must multiply one equation by a number to make one pair the same.
**Still need opposite sign!

$$
\begin{aligned}
x+4(2) & =8 \\
x+8 & =8 \\
x & =0 \\
& (0,2)
\end{aligned}
$$

$$
\begin{aligned}
& 5(3)-9 y=-3 \\
& 15^{-15}-9 y=-3^{-15} \\
&-9 y=-18 \\
& y=2 \\
&(3,2)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& -y=3 \\
& -y=1 \\
& y=-1 \\
& (2,-1)
\end{aligned}
$$

$$
\begin{array}{r}
\text { ex)3(2x+5y=11) } \\
2(-3 x+8 y=-1) \\
(5 x+15 y=33 \\
-6 x+16 y=-2 \\
\hline 31 y=31
\end{array}
$$

If one equation can not be mutliplied to make a matching pair you must multiply both equations by different numbers to
create a pair that is the same.

$$
\begin{gathered}
e x)^{4}(7 x-3 y=2) \\
3(5 x+4 y=-17) \\
28 x-12 y=8 \\
15 x+12 y=-51 \\
\hline 43 x=-43 \\
x=-1
\end{gathered}
$$

$$
\begin{aligned}
2 x+5(1) & =11 \\
2 x+5 & =11 \\
2 x & =6 \\
x & =3
\end{aligned} \quad(3,1)
$$

$$
\begin{aligned}
& 7(-1)-3 y=2 \\
&-7-3 y=2 \\
&-3 y=9 \\
& y=-3 \\
&(-1,-3)
\end{aligned}
$$

