Graphs of $\sin \theta$, $\cos \theta$, $\tan \theta$

also called trig functions

Note: as we change θ , different values of $\sin\theta$ result Let θ = x

θ is an <u>Independent Variable</u>, ie. x Resulting values are Dependent variable, ie. y

Let's graph $y = \sin \theta$ over $[0, 2\pi]$

Definitions

<u>Periodic Function</u> = function whose graph has a pattern that repeats itself over and over.

Period = the length of one full pattern. ex. in sine graph its 2π

<u>Amplitude</u> = vertical deviation of graph from middle (sinusoidal axis). ex. for sine Amp = 1

<u>Sinusoidial Axis</u> = horizontal axis above and below which the graph fluctuates. It defines the amplitude.

Characteristics of sine function

$$y = \sin \theta$$

Period: 2π

Amp: 1

Domain: In general $(-\infty, \infty)$

Range: In general [-1, 1]

Zeroes: In general $x = k \pi$, $k \in I$

(X-ints)

Graph $y = \cos \theta$ over $[0, 2\pi]$ ex.

Characteristics of cosine function $y = \cos \theta$

Period: 2 π

Amp: 1

Domain: In general $(-\infty, \infty)$

Range: In general [-1, 1]

Zeroes: In general $x = \frac{\pi}{2} + \pi k$, $k \in I$

ex. Graph $y = tan\theta$ over $[0, 2\pi]$ = $sin \theta$

Characteristics of tangent function

 $y = tan \theta$

Period: π

Amp: none

Domain: In general $x \neq \frac{\pi}{2} + k\pi$, $k \in I$

Range: In general $(-\infty, \infty)$

Equations for asymptotes: $x = \frac{\pi}{2} + k\pi$, $k \in I$

Zeroes: In general $x = k\pi$, $k \in I$