Linear Relations

Relation $=$ A description of how two variables are connected.

Linear Relation = A relation whose points lie on a straight line.

Healy is a dog trainer in Gimli. She charges $\$ 50$ for a training kit plus $\$ 30$ for each session. What are some characteristics of this relation?

Dog Training Costs
(1) How does the pattern change? When the number of lessons increase by 1 , the cost increases by $\$ 30$.
(2) Can you have part of a session?

$$
\text { No } \rightarrow \text { discrete }
$$

Number of training sessions IV

Independent Variable (x)

$=$ Variable whose values are freely chosen.

Dependent Variable (y)

= Variable whose value depends on the independent variable

Example 1

Clint bought a computer 4 yr ago. Clint estimates that the relation between the age of the computer in years, t, and its value in dollars, v, is represented by $v=-300 t+1200$. The relation is also represented by this table of values and graph.
How does each representation show this is a linear relation?

Solution

A. How do the values in the table change?

When the year goes UP by 1 , the value of the computer goes down by $\$ 300$.

B. How does the graph show that this is a linear relation?

$$
\begin{aligned}
& \text { graph } \rightarrow \text { straight line } \\
& \text { table } \rightarrow \text { changes by same omount }
\end{aligned}
$$

C. Circle the description of the rate of change.
constant rate of change varying rate of change
D. Can you have any part of a year? Yes
E. Is this data discrete or continuous? Explain.

Discrete = Data cannot be broken into smaller parts that have meaning.

Continuous $=$ Data can be broken into smaller parts that have meaning.

Example 2

Bonnie installs square ceramic tiles of different sizes. The relation between a tile's side length, s, and its area, A, is represented by a table of values, an equation, and a graph. How does each representation show this is a non-linear relation?

Length $(\mathrm{cm}), s$	Area $\left(\mathrm{cm}^{2}\right), A$
0	0
1	1
2	4
3	9

$A=s 0$
\uparrow
$\operatorname{deg} 2$
or squared

A. How do the values of the dependent variable change in the table?

Each time the length gets bigger by 1 , the area gets bigger by a different amount.
B. How does the graph show that this is a non-linear relation?
not a straight line
C. Circle the description of the rate of change.

D. Is this data discrete or continuous? Explain.
points are connected

Degree of an equation

When a linear relation is written as an equation, it will contain one or two variables and its degree will be 1 .

Linear Relations:
Non-Linear Relations:
$x^{\prime}=7$
$3 m^{\prime}+2 n^{\prime}=-12$
$y=-2 / 3 x^{\prime}+5$

$2 x+2^{2}=6$
$h=h^{3}$
(xy) $=3$

