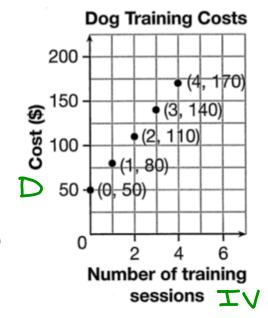

Linear Relations


Relation = A description of how two variables are connected.

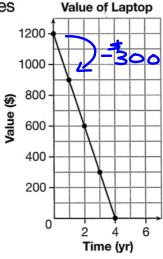
Linear Relation = A relation whose points lie on a straight line.

Healy is a dog trainer in Gimli. She charges \$50 for a training kit plus \$30 for each session. What are some characteristics of this relation?

- How does the pattern change?
 When the number of lessons increase by ________, the cost increases by \$_______.
- ② Can you have part of a session?
 No → discrete

Independent Variable (x)

= Variable whose values are freely chosen.


Dependent Variable (y)

= Variable whose value depends on the independent variable

Example 1

Clint bought a computer 4 yr ago. Clint estimates that the relation between the age of the computer in years, t, and its value in dollars, v, is represented by v = -300t + 1200. The relation is also represented by this table of values and graph.

How does each representation show this is a linear relation?

Solution

A. How do the values in the table change?

Time (yr), t	Value (\$), <i>v</i>		
0	1200		
> 1	900 🗲		
2	600		
3 3	300€		
4	0		

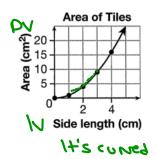
B. How does the graph show that this is a linear relation?

C. Circle the description of the rate of change.

constant rate of change

varying rate of change

- **D.** Can you have any part of a year? \checkmark
- E. Is this data discrete or continuous? Explain.


Discrete = Data cannot be broken into smaller parts that have meaning.

Continuous = Data can be broken into smaller parts that have meaning.

Example 2

Bonnie installs square ceramic tiles of different sizes. The relation between a tile's side length, *s*, and its area, *A*, is represented by a table of values, an equation, and a graph. How does each representation show this is a **non-linear relation**?

	0	\supset	
DI (25/24),143		- 7	1
	1	3	_
	4	~	3
	9	2	5
		Z)	7
		4 9 16	4 9 16

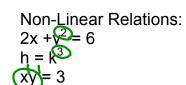
A. How do the values of the dependent variable change in the table?

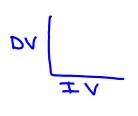
B. How does the graph show that this is a non-linear relation?

C. Circle the description of the rate of change.

constant rate of change

varying rate of change


D. Is this data **discrete** or **continuous?** Explain.


Points are connected

Degree of an equation

When a linear relation is written as an equation, it will contain one or two variables and its degree will be 1.

Linear Relations: x = 7 $3m^{1} + 2n^{1} = -12$ $y = -2/3x^{1} + 5$

