The Factor Theorem
What does it mean if $\mathrm{P}(\mathrm{a})=0$?
$P(x)$ has the factor $(x-a)$ if and only if $P(a)=0$
Which of the following binomials are factors of $P(x)=x^{3}-3 x^{2}-x+3$?
a) $x-1$

$$
\begin{aligned}
P(1) & =(1)^{3}-3(1)^{2}-(1)+3 \\
& =0 \\
P(-3) & =(-3)^{3}-3(-3)^{2}-(-3)+3 \\
& =-27-27+3+3 \\
& =-48
\end{aligned}
$$

b) $x+3$
$\therefore(x-1)$ is a factor
ex. Given that $(x+2)$ is a factor of $P(x)$, express $P(x)$ as a product of its factors.

$$
\begin{aligned}
& P(x)=x^{3}+2 x^{2}-x-2 \\
& -2\left(\begin{array}{cccc}
1 & 2 & -1 & -2 \\
\downarrow & -2 & 0 & 2 \\
1 & 0 & -1 & \underbrace{0}_{R}
\end{array}\right. \\
& \begin{aligned}
P(x) & =\left(x^{2}-1\right)(x+2)<\text { stop here } \\
& =(x+1)(x-1)(x+2) \text { en }
\end{aligned} \\
& =(x+1)(x-1)(x+2)<\text { if fully } \\
& \text { factored }
\end{aligned}
$$

ex. Given $x=4$ is one of the zeroes of $Q(x)=2 x^{3}-5 x^{2}-11 x-4$ determine all of the other zeroes.

$$
\begin{aligned}
4 & \begin{array}{cccc}
2 & -5 & -11 & -4 \\
\downarrow & 8 & 12 & 4
\end{array} \\
Q(x)= & \left(2 x^{2}+3 x+1\right)(x-4) \\
0= & (2 x+1)(x+1)(x+4) \\
& x=-\frac{1}{2},-1,4
\end{aligned}
$$

ex. Fully factor: $M(x)=2 x^{3}-9 x^{2}+7 x+6$.

$$
\begin{aligned}
& \pm 1 \\
& \pm 2
\end{aligned}
$$

$$
\begin{array}{rlrl}
M(-1) & =2(-1)^{3}-9(-1)^{2}+7(-1)+6 & & \pm 3 \\
& =-2-9-7+6 & \pm 6
\end{array}
$$

$$
\therefore(x+1) \text { is not a factor }
$$

$$
M(+2)=2(+2)^{3}-9(+2)^{2}+7(+2)+6
$$

$$
\begin{aligned}
& =16-36+14+6 \\
& =0
\end{aligned}
$$

$$
2 \left\lvert\, \begin{array}{rrrr}
2 & -9 & 7 & 6 \\
\downarrow & 4 & -10 & -6 \\
2 & -5 & -3 & \underbrace{0}_{R}
\end{array}\right.
$$

$$
\begin{aligned}
M(x) & =\left(2 x^{2}-5 x-3\right)(x-2) \\
& =(2 x+1)(x-3)(x-2)
\end{aligned}
$$

ex. When $P(x)$ is divided by $x-3$, it has a quotient of $2 x^{2}+x-6$ and a remainder of 4 . Determine $P(x)$.

$$
\begin{aligned}
& \qquad \frac{P(x)}{(x-3)}=\left(2 x^{2}+x-6\right)+\frac{4}{(x-3)} \\
& \text { stop } \longrightarrow P(x)=\left(2 x^{2}+x-6\right)(x-3)+4 \\
& \text { here dividend quohent divisor remainder } \\
& \text { if not } \\
& \text { as king simplify }
\end{aligned}
$$

ex. When $2 x^{3}+k x^{2}-3 x+2$ is divided by $x-2$, the remainder is 4 . Determine the value of k.

$$
\begin{array}{c|c}
2(2)^{3}+k(2)^{2}-3(2)+2=4 \\
16+4 k-6+2=4 \\
4 k=-8 & 2
\end{array} \left\lvert\, \begin{array}{cccc}
2 & k & -3 & 2 \\
1 & 4 & 2 k+8 & 4 k+10 \\
k=-2 & \begin{array}{lll}
4 & k+4 & 2 k+5 \\
\hline
\end{array} & \begin{array}{c}
4 k+12 \\
5
\end{array} \\
4 k+12=4 \\
4 k=-8 \\
k=-2
\end{array}\right.
$$

$e x$. Find the value of a if $(x-2)$ is a factor of $a x^{3}+4 x^{2}+x-2$.

$$
\begin{gathered}
a(2)^{3}+4(2)^{2}+(2) \alpha=0 \\
8 a+16=0 \\
8 a=-16 \\
a=-2
\end{gathered} \left\lvert\, \begin{array}{lccc}
a & 4 & 1 & -2 \\
1 & 2 a & 4 a+8 & 8 a+18 \\
a & 2 a+4 & 4 a+9 & 8 a+16 \\
8 a+16=0 \\
8 a=-16 \\
a=-2
\end{array}\right.
$$

