Characteristics of Polynomial Functions

Recall, standard form of a polynomial:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a whole number x is a variable the coefficients a_{n} to a_{0} are real numbers

The degree of a polynomial is the highest power of the variable in the equation.

The leading coefficient is the coefficient of the highest power.

Ex. $-2 x^{3}+2 x^{2}+3$
Deg 3
L.C. -2

Ex. $x^{2}+x-5 x^{4}-7 x^{3}+6$
Deg 4
L.C. -5

Types of polynomials:

- Linear (degree 1)
- Quadratic (degree 2)
- Cubic (degree 3)
- Quartic (degree 4)
- Quintic (degree 5)

The graph of a polynomial is smooth and continuous

- no sharp corners and can be drawn without lifting a pencil off a piece of paper

Polynomials can be described by their degree:

- Odd-degree polynomials (1, 3, 5, etc.)
- Even-degree polynomials (2, 4, etc.)

Can also have a degree of 0 ..
Constant function

$$
y=2 x^{0}
$$

A point where the graph changes from increasing to decreasing is called a local maximum point.

A point where the graph changes from decreasing to increasing is called a local minimum point.

A graph of a polynomial function of degree n can have at most n x-intercepts and at most ($\mathrm{n}-1$) local maximum or minimum points

Functions with Odd Powers

3rd Degree

$$
\mathrm{y}=\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}
$$

3rd Degree

$$
y=-a x^{3}+b x^{2}+c x+d
$$

5th Degree

$$
\mathrm{y}=\mathrm{ax}+\mathrm{bx}^{3}+\mathrm{cx}^{2}+\mathrm{dx}+\mathrm{e}
$$

End behqviour:

Positive, odd:
falls to the left at $-\infty$ rises to the right at $+\infty$

Negative, odd: rises to the left at $-\infty$ falls to the right at $+\infty$

Functions with Even Powers

End behaviour:

Positive, even:
rises to the left at $-\infty$ rises to the right at $+\infty$

Negative, even:
falls to the left at $-\infty$
falls to the right at $+\infty$

Polynomial Matching

What to look for?

- degree
- leading coefficient
- even or odd
- number of x-intercepts
- number of local max/min
- end behaviour
\#1.
$f(x)=\frac{5}{6}(x+1)^{2}(x-1)(x-4)$
\#2.

$$
f(x)=x^{4}-2 x^{2}+1
$$

\#3.
$f(x)=-3 x^{5}+2 x^{2}-7 x+1$
\#4.

$$
f(x)=x^{3}-5 x
$$

\#5.

$$
f(x)=-2 x^{4}+4 x^{2}-2
$$

\#6.

$$
f(x)=x^{5}-2 x^{2}+4
$$

Graph a

Graph b

Graph c

Graph d

Graph f

P46 \#1,3-5, 8
p. 54 \#1,2

