Graphing Polynomials

The zeros of any polynomial fuction $y=f(x)$ correspond to the x-intercepts of the graph and the roots of the equation, $f(x)=0$.
ex. $f(x)=(x-1)(x-1)(x+2)$
$0=(x-1)(x-1)(x+2) \quad x=1,-2$
If a polynomial has a factor $x-a$ that is repeated n times, then $x=a$ is a zero of multiplicity, $n . f(x)=(x-1)^{2}(x+2)^{\prime}$

ex. Sketch the graph of

$$
f(x)=(x-1)^{2}(x+3)^{2}
$$

$$
\begin{aligned}
& x-\operatorname{lnt}=1,-3 \\
& \operatorname{Deg} 4 \\
& \text { L.C. }+ \\
& y-\operatorname{int}=9
\end{aligned}
$$

ex. Sketch the graph of

$$
\begin{aligned}
& \operatorname{Deg}_{-L C} \mathrm{~L}^{2} \\
& \underset{\sim}{x-i n t=1,-2} \\
& y-\text { int }=-8 \\
& \text { へ }
\end{aligned}
$$

ex. Sketch the graph of

$$
p(x)=-2 x^{3}+6 x-4
$$

$$
\begin{aligned}
& p(1)=-2(1)^{3}+6(1)-4 \\
& =-2+6-4 \\
& =0 \\
& 1 \begin{array}{cccc}
-2 & 0 & 6 & -4 \\
\downarrow & -2 & -2 & 4 \\
-2 & -2 & 4 & 0
\end{array} \\
& p(x)=\left(-2 x^{2}-2 x+4\right)(x-1) \\
& =-2\left(x^{2}+x-2\right)(x-1) \\
& =-2(x+2)(x-1)^{2} \\
& \operatorname{Deg} 3 x=-2,1 \\
& \text {-Lc } \underset{y-\text { int }=-4}{\wedge}
\end{aligned}
$$

Given each graph below, write the equation of the polynomial:

Deg 3
$+L C$
x-mints $=-2,1$ $(x+2)(x-1)$
$y-\ln t=-12$

$$
\begin{gathered}
f(x)=a(x+2)^{2}(x-1) \\
-12=a(0+2)^{2}(0-1) \\
-12=-4 a \\
a=3 \\
f(x)=3(x+2)^{2}(x-1)
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Deg} 4-L C \\
x-i n t s= \pm 1 \\
y \text { int }=-2 \\
y=a(x-1)^{2}(x+1)^{2} \\
-2=a(-1)^{2}(1)^{2} \\
-2=a \\
y=-2(x-1)^{2}(x+1)^{2}
\end{gathered}
$$

