Polynomial Word Problems
A box in the shape of a rectangular prism has side lengths $x, x+2$, and $x+10$. Write a function $V(x)$ to express the volume of the box in terms of x. Find all possible values of x, given that the volume of the box is $96 \mathrm{~cm}^{3}$.
State the dimensions of the box. $\quad V=L W H$

$$
\begin{aligned}
V(x) & =(x)(x+2)(x+10) \\
96 & =\left(x^{2}+2 x\right)(x+10) \\
0 & =x^{3}+12 x^{2}+20 x-96
\end{aligned}
$$

$$
0=(2)^{3}+12(2)^{2}+20(2)-96
$$

$$
0=8+48+40-96
$$

$$
\begin{gathered}
v(x)=\left(x^{2}+14 x+48\right)(x-2) \\
0=(x+6)(x+8)(x-2) \\
x=-x,-x, 2
\end{gathered}
$$

Dimensions: $2 \mathrm{~cm}, 4 \mathrm{~cm}, 12 \mathrm{~cm}$

Bill is preparing to make an ice sculpture. He has a block of ice that is 3 ft wide, 4 ft high, and 5 ft long. Bill wants to reduce the size of the block by removing the same amount of ice from each side. He wants to reduce the volume of the ice block to $24 \mathrm{ft}^{3}$. How much should he remove from each dimension?

$$
\begin{aligned}
V & =\text { LWH } \\
24 & =(3-x)(4-x)(5-x) \\
24 & =\left(12-7 x+x^{2}\right)(5-x) \\
0 & =x^{3}-12 x^{2}+47 x-36 \\
v(1) & =(1)^{3}-12(1)^{2}+47(1)-36 \\
& =1-12+4-36 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& v(x)=(x-1)\left(x^{2}-11 x+36\right) \\
& 0=(x-1)\left(x^{2}-11 x+36\right) \\
& x=1
\end{aligned} x=\frac{11 \pm}{2(1)^{2}-4(1 \times(36)} \\
& \text { He }=\text { hold remove } 1 \text { foot. } \\
& \begin{array}{c}
\text { diserimmant } \\
\text { is negative }
\end{array}
\end{aligned}
$$

