Write an equation given a slope and a point
Use slope-point form $y-y_{1}=m\left(x-x_{1}\right)$
Ex) Write an equation in slope-point form given:
a) The slope is -4 and the coordinates of a point on the graph are $(-1,5)$.

$$
y-5=-4(x+1)
$$

b) The line graphed to the right.

$$
m=3
$$

$$
(0,1)
$$

$$
y-1=3(x)
$$

Ex) Write an equation in slope-intercept form given:
a) $m=2$ and that the line passes through $(-2,5)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=2(x+2) \\
y-5=2 x+4 \\
+5=2 x+9 \\
y=2 x+9
\end{gathered}
$$

Steps:

1) Plug in m, x_{1} and y_{1}
2) Distribute the brackets
3) Move all terms to one side to isolate y.
4) Combine constant terms
b) The slope is $\frac{2}{2}$ and that the line passes through ($-6,2$).
$m \frac{2}{3}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{2}{3}\left(x+\frac{6}{1}\right) \\
& y-12=\frac{2}{3} x+\frac{12}{3} \\
& +2 \\
& y=\frac{2}{3} x+6
\end{aligned}
$$

c) Line passes through $(-4,3)$ and has a slope of -1 .

$$
\begin{aligned}
& y-3=-1(x+4) \\
& y-3=-x-4 \\
& y=-x-1+3
\end{aligned}
$$

d) $m=\frac{5}{4}$ and goes through $(-3,1)$.

$$
\begin{aligned}
& y-1=\frac{5}{4}(x+3) \\
& y-f 1=\frac{5}{4} x+\frac{15}{4}+\frac{1}{1} \times 4 \\
& +1=4 \\
& y=\frac{5}{4} x+\frac{15}{4}+\frac{4}{4} \\
& y=\frac{5}{4} x+\frac{19}{4}
\end{aligned}
$$

