Write an equation given two points Recall, slope formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and slope-point form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Write an equation that goes through:
ex 1) $\left(-4, \frac{y}{1}\right)$ and $\left(-2, y_{2},\right)^{2}$ in slope-intercept form.
Step 1: Find m using 2 points

$$
m=\frac{2-1}{-2-(-4)}=\frac{1}{2}
$$

Step 2: Plug into point-slope form with \underline{m} and 1 point

$$
y-1=\frac{1}{2}(x+4)
$$

Step 3: Simplify your equation into $y=m x+b$ form

$$
\begin{array}{ll}
y-1=\frac{1}{2} x+2 & y-2=\frac{1}{2}(x+2) \\
y=\frac{1}{2} x+2+1 & y-2=\frac{1}{2} x+1 \\
y=\frac{1}{2} x+3 \quad \text { or } \quad y=\frac{1}{2} x+3
\end{array}
$$

ex 2) $(2,2)$ and $(6,8)$ in slope-intercept form.

$$
\begin{aligned}
& m=\frac{8-2}{6-2} \\
& m=\frac{6}{4} \\
& m=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y-2=\frac{3}{2}(x-2) \\
& y-2=\frac{3}{2} x-3 \\
& y=\frac{3}{2} x-1
\end{aligned}
$$

ex 3$)(-4,-2)$ and $(4,7)$ in general form.

$$
\begin{aligned}
m=\frac{-2-7}{-4-4} & \text { (8) } y-7=\frac{(8)}{8}=\frac{9}{8}(x-4) \\
=\frac{-9}{-8} & 8 y-56=9 x-36 \\
& =\frac{9}{8}
\end{aligned} \quad 0=9 x-8 y+20
$$

