Sum + Difference Identities

There are six identities that can be used when an exact value is not on the unit circle:

$$
\begin{aligned}
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
\end{aligned}
$$

Tips:

- Be care to watch the signs.
- Alpha and beta are used instead of theta to differentiate them.
- Your final answer must be a single fraction with one denominator.
- Radicals are okay and do not need to be rationalized.

Need to find a pair of ex. Determine the exact value of $\sin \left(\frac{7 \pi}{12}\right)$. exact values that add or subtract to make this.

$$
\begin{aligned}
& \begin{array}{r}
\frac{4 \pi}{12}+\frac{3 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4} \\
\frac{9 \pi}{12}-\frac{2 \pi}{12}=\frac{3 \pi}{4}-\frac{\pi}{6} \\
\frac{10 \pi}{12}-\frac{3 \pi}{12}=\frac{5 \pi}{6}-\frac{\pi}{4} \\
\alpha \beta
\end{array} \\
& \sin \left(\frac{7 \pi}{12}\right) \\
& \left.=\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right) \begin{array}{l}
\text { combination will work } \\
\text { and will give you the } \\
\text { same final answer. } \\
\text { Pick one to use. }
\end{array}\right\} \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& \text { Plug in values from } \\
& \frac{\sqrt{6}+\sqrt{2}}{4} \\
& \text { Multiply and make a } \\
& \text { common denominator. }
\end{aligned}
$$

ex. Determine the exact value of $\cot \left(75^{\circ}\right)$.
Must find tan first because there is no formula for the reciprocal functions.

$$
\begin{aligned}
& \alpha{ }^{\beta} \\
& 30^{\circ}+45^{\circ} \\
& 120^{\circ}-45^{\circ} \\
& 135^{\circ}-60^{\circ}
\end{aligned}
$$

Again, pick any pair of exact values that adds or subtracts to 75°.

$$
\begin{aligned}
& \tan (\alpha-\beta) \\
& \tan \left(75^{\circ}\right)=\tan \left(120^{\circ}-45^{\beta}\right) \\
& =\tan \left(120^{\circ}\right)-\tan \left(45^{\circ}\right) \\
& 1+\tan \left(120^{\circ}\right) \tan \left(45^{\circ}\right) \\
& =\frac{(-\sqrt{3})-(1)}{1+(-\sqrt{3})(1)} \quad \begin{array}{l}
\text { Plug in values from } \\
\text { the unit circle. }
\end{array} \\
& =\frac{-\sqrt{3}-1}{1-\sqrt{3}} \\
& \cot \left(75^{\circ}\right)=\frac{1-\sqrt{3}}{-\sqrt{3}-1} \quad \text { Take the reciprocal of }
\end{aligned}
$$

