Relations, Functions and Their Graphs
Relation - a set of ordered pairs (resulting from a rule) (x, y)
ex) G is a relation defined by $G=\{(2,1),(3,2),(5,6)\}$
Ordered pairs of the relation are:

$$
(2,1) \quad(3,2) \quad(5,6)
$$

Domain - the set of all x-values of the ordered pair Range - the set of all y-values of the ordered pair ex) Given $H=\{(6,1),(3,1),(2,4),(6,4)\}$.

State domain and range.

$$
D:\{6,3,2\}
$$

ex) Given the function, state domain and range.

$$
\begin{aligned}
& D:\{-3,-2,1,4\} \\
& R:\{5,3,0,-2,-4\}
\end{aligned}
$$

Notation

Domain and range can be represented using two notations. The first type is set notation.

Set Notation
D: $\{x \mid \quad\}$
$\mathrm{R}:\{\mathrm{yl} \quad\}$

- point is included use \leq or \geq
- point is not included use < or >

If all values use $x \in R$ or $y \in R$ (means, x or y belongs to

D: $\{x \mid-7 \leq x<5\}$
$R:\{y \mid-3 \leq y<1\}$ all real numbers)

Types of graphs:

A continuous graph with two endpoints:

Important Note:

- To find the domain for a graph with two endpoints, always identify the x -values of the point farthest to the left and the point farthest to the right.
- For the range, you want the y-values of the lowest point and the highest point.

A continuous graph with only one endpoint (continues forever in the other direction):

$$
\begin{aligned}
& D:\{x \mid x>0\} \begin{array}{l}
\text { Note: If the arrow were } \\
\text { pointing to the left, the } \\
\text { domain would be } \leq \text { the } \\
\text { x-value. If the arrow } \\
\text { were pointing down, the } \\
\text { range would } \leq \text { the y- } \\
\text { value. }
\end{array}
\end{aligned}
$$

$D:\{x \mid x \leq 5\}$
$R:\{y \mid y=0\}$

A continuous graph that has two arrows:

$$
\begin{aligned}
& D:\{x \mid x \in \mathbb{R}\} \\
& R:\{y \mid y \in \mathbb{R}\}
\end{aligned}
$$

Note: If one of the arrows were pointing up and one of the arrows were pointing down, then the range would be all real numbers.

$$
\begin{aligned}
& \text { D: }\{x \mid x=0\} \\
& \text { R: }\{y \mid y \in \mathbb{R}\}
\end{aligned}
$$

