Synthetic Division
Synthetic division is a method that only uses the coefficients and constants in a question and is quicker than long division.

Ex 1) $\left(x^{3}-8 x^{2}+5 x+2\right) \div(x-2)$

Long division

$$
\begin{aligned}
& \text { Long division } x^{2}-6 x-7 \\
& \qquad \begin{array}{r}
x-2 \begin{array}{l}
x^{3}-8 x^{2}+5 x+2 \\
x^{3}-2 x^{2} \\
-6 x^{2}+5 x \\
-6 x^{2}+12 x
\end{array} \\
\frac{-7 x+2}{}
\end{array}
\end{aligned}
$$

Synthetic division

$$
2 \begin{array}{cccc}
\left\lvert\, \begin{array}{ccc}
1 & -8 & 5
\end{array}\right. & 2 \\
\downarrow & 2 & -12 & -14 \\
1 & -6 & -7 & \frac{-12}{R} \\
x^{2}-6 x-7 & R
\end{array}
$$

Ex 2) $\left(2 x^{4}-x+3 x^{3}-5\right) \div(x+2)$ Dividend Divisor

Steps for Synthetic Division:

Step 1: Write out the coefficients of the dividend (Descending power order) and fill any missing power places with zero
Step 2: To the left place the opposite number of the divisor
Step 3: Bring down the first coefficient
Step 4: Multiply by the divisor and add to the next coefficient
Step 5: Repeat until finished
Step 6: Beginning with the first number, write it with the variable that is one degree less than the dividend. The last number is the remainder.
$-2 \left\lvert\, \begin{array}{lllll}2 & 3 & 0 & -1 & -5 \\ \downarrow & -4 & 2 & -4 & 10 \\ 2 & -1 & 2 & -5 & \frac{5}{R} \\ 2 x^{3}-x^{2}+2 x & -5 & R\end{array}\right.$

Ex 3) $\left(x^{3}+x-4 x^{2}+9\right) \div(x+1)$

$$
\begin{array}{cccc}
-1 & \begin{array}{ccc}
1 & -4 & 1
\end{array} & 9 \\
\downarrow & 5 & -6 \\
1 & -5 & 6 & \frac{3}{R} \\
x^{2}-5 x+6 & -1 & 5
\end{array}
$$

$\begin{gathered}\left(x^{3}+x-4 x^{2}+9\right) \div(x+1) \\ \text { Dividend } \\ \text { divisor }\end{gathered}=\begin{gathered}x^{2}-5 x+6+\frac{3}{(x+1)} \\ \text { quotient }\end{gathered}$
Ex 4) $\left(2 x^{3}+3 x^{2}+15-4 x\right) \div(x+3)$

$$
-3 \left\lvert\, \begin{array}{llll}
2 & 3 & -4 & 15 \\
\downarrow & -6 & 9 & -15
\end{array} \underbrace{}_{2}-3 \quad 5 \underbrace{0}_{R}\right.
$$

Ex 5) $P(x)=\left(x^{3}-7 x+6\right) \div(x-1)$

$$
\begin{aligned}
& 1 \begin{array}{cccc}
1 & 0 & -7 & 6 \\
\downarrow & 1 & 1 & -6 \\
1 & 1 & -6 & 0 \\
x^{2}+x-6 & R
\end{array} \\
& \frac{P(x)}{(x-1)}=x^{2}+x-6
\end{aligned}
$$

